One of the most energy-efficient schools in the Commonwealth, with a predicted EUI of 23.3 kBtu/sf/yr.

Prominently located in an urban neighborhood of Brookline, the Coolidge Corner School is the largest PreK-8 school in the system. Sited behind the historic Devotion House and a public courtyard, the oldest portion of the school was constructed in 1913 with two additions from the 1960s and 70s. HMFH’s design for the 1,000-student school includes renovations to the 1913 building, and the addition of two new wings that allow grade levels to be grouped together and function as self-contained learning communities within the larger facility.

With outdoor classrooms, a rain garden, school gardens, and natural elements, the site is a key component of the learning environment.

The 1913 Georgian schoolhouse acts as the centerpiece of the new complex.

A pollinator-friendly garden of native plant species and accessible student planters provide learning opportunities in outdoor classrooms, where felled trees are given a second life as seating.

PROJECT TEAM
Owner: Town of Brookline
Architect: HMFH Architects
OPM: Tony Guigli
Construction Manager: Shawmut Design and Construction
Civil: Nitsch Engineering
MEP: Garcia Galuska DeSouza Consulting Engineers
Structural Engineer: Foley Buhl Roberts & Associates
Landscape Architect: IBI Placemaking

PROJECT RECOGNITION
Copper Development Association, Copper in Architecture Award
Illuminating Engineering Society, Award of Merit
American School & University, Citation

SUSTAINABILITY
Predicted Energy Use Intensity (EUI) 23.3 kBtu/sf/yr
Predicted Energy Use Reduction 33%
Predicted Water Use Reduction 33%

LEED FACTS
LEED GOLD 61 credits
Location and Transportation 14 / 30
Sustainable Sites 8 / 12
Water Efficiency 8 / 10
Energy and Atmosphere 20 / 31
Materials and Resources 4 / 13
Indoor Environment Quality 4 / 16
Innovation 5 / 6
Regional Priority 2 / 4
Located on Buffalo’s Outer Harbor, this existing 100,000 square foot warehouse facility is being partially repurposed into a multi-use performance venue to activate the city’s waterfront and provide the public with new amenities. The Erie Canal Harbor Development Corporation (ECHDC) is in the midst of a multi-phase process reconnecting people to the powerful Lake Erie waterfront. The result will be a system of active public landscapes balancing ecological recovery and vibrant cultural attractions. The existing steel framing will be kept and incorporated in a public plaza space which can host concerts, open air markets, sporting events and much more. Placed under the existing frame, newly constructed spaces for restaurants, bars and a flexible venue space will bring new activity and life to the waterfront. The project also aims to set a precedent for sustainable design strategies with a focus on carbon neutrality and the incorporation of on-site renewable energy.

Located on Buffalo's Outer Harbor, this existing 100,000 square foot warehouse facility is being partially repurposed into a multi-use performance venue to activate the city's waterfront and provide the public with new amenities. The Erie Canal Harbor Development Corporation (ECHDC) is in the midst of a multi-phase process reconnecting people to the powerful Lake Erie waterfront. The result will be a system of active public landscapes balancing ecological recovery and vibrant cultural attractions. The existing steel framing will be kept and incorporated in a public plaza space which can host concerts, open air markets, sporting events and much more. Placed under the existing frame, newly constructed spaces for restaurants, bars and a flexible venue space will bring new activity and life to the waterfront. The project also aims to set a precedent for sustainable design strategies with a focus on carbon neutrality and the incorporation of on-site renewable energy.
Xuhui Runway Park is an innovative urban revitalization project that breathes life into a unique piece of Shanghai’s history. Located in the Xuhui District, this 8.24-hectare site was formerly a runway for Longhua Airport, which had operated for over 80 years and was Shanghai’s only civilian airport until 1949. To reflect the site’s previous life, the park’s design scheme mimics the motion of a runway, creating diverse linear spaces for vehicles, bicycles, and pedestrians by organizing the park and the street into one integrated runway system. While all the spaces are linear in shape, diverse spatial experiences are created by applying different materials, scales, topography, and programs. In this way, the park serves as a runway of modern life, providing a space for recreation and respite from the surrounding city.

The Sasaki design team applied good practice into the park design, which greatly contributed to its Gold certification in September, 2019, marking the first SITES certified project in Mainland China. The design preserves portions of the runway’s original concrete where feasible, including the reuse of broken concrete pieces to build paths, plazas, and resting areas. The historic aerodynamic and industrial sensibility of the site is also referenced through the use of lighting poles that recall the transmission of communication and airfield illumination of the airport. All lighting is refrained from the habitat area and nocturnal life.

Diverse wildlife habitats are integrated with various landscape programs, with 100% plant species native to the Yangtze River Delta. These habitats include both land and marine typologies. The stormwater from the park and Yunjin Road, which are parallel to each other, is managed through the 5,760-square-meter rain garden and 8,107-square-meter constructed wetland along the road. The roadside rain garden system is the first of its kind to be built in the city of Shanghai.
MathWorks engaged Gensler to provide master planning, site selection, and design for their Lakeside Campus, a two mile drive from their Apple Hill campus in Natick, MA.

Working with MathWorks’ leadership, Gensler helped to vision and define the possibilities for updating aspects of the existing buildings. The team carefully analyzed existing conditions, daylight, and workplace planning scenarios. Through further study, it was determined that it was more advantageous to demolish the existing buildings and build new facilities. The new Lakeside campus comprises two office buildings, a garage, and an amenities hub. The team worked with MathWorks to devise numerous siting options and select the best scheme for the new campus.

The planning strategy aimed to create a connection to the Apple Hill Campus, as well as connect the workplace to the core amenities hub and parking structure. Centrally located common spaces are clustered at the building core and allow access to natural light.

The roof of the new office building and parking structure feature PV’s, while the fitness center and café house a green roof. Other sustainable features of the campus include: underground cisterns for reclaiming water and irrigation, radiant lobby flooring, chilled beams in the offices, triple glazing, and individual control of lighting and HVAC systems in each employee office.

Energy Use Intensity (EUI): 97.98
Lighting Power Density (LPD): 0.39

PROJECT TEAM

Architect
Gensler

Construction Manager
Consigli Construction Co.

MEP/FP Engineer
NV5

Structural Engineer
McNamara/Salvia

Landscape Architect
Carol R. Johnson Associates

Lighting Consultant
Atelier 10